Accepted Papers
Regular papers
-
Fully Automatic Bi-Atria Segmentation from Late Gadolinium-Enhanced MRIs Using Double Convolutional Neural Networks
Zhaohan Xiong, Aaqel Nalar, Kevin Jamart, Martin Stiles, Vadim Fedorov, and Jichao Zhao -
Two-stage 2D CNN for automatic atrial segmentation from LGE-MRIs
Kevin Jamart, Zhaohan Xiong, Gonzalo Maso Talou, Martin Stiles, Jichao Zhao -
DeepLA: Automated Segmentation of Left Atrium from Interventional 3D Rotational Angiography Using CNN
Kobe Bamps, Stijn De Buck, Jeroen Bertels, Rik Willems, Christophe Garweg, Peter Haemers, Joris Ector -
Deep Learning for Cardiac Motion Estimation: Supervised vs. Unsupervised Training
Huaqi Qiu, Chen Qin, Loic Le Folgoc, Benjamin Hou, Jo Schlemper, Daniel Rueckert -
3D Left Ventricular Segmentation From 2D Cardiac MR Images Using Spatial Context
Sofie Tilborghs, Tom Dresselaers, Piet Claus, Jan Bogaert, Frederik Maes -
Non-Invasive Pressure Estimation in Patients with Pulmonary Arterial Hypertension: Data-driven or Model-based?
Yingyu Yang, Stephane Gillon, Jaume Banus Cobo, Pamela Moceri, Maxime Sermesant -
Multimodal cardiac segmentation using disentangled representation learning
Agisilaos Chartsias, Georgios Papanastasiou, Chengjia Wang, Colin Stirrat, Scott Semple, David Newby, Rohan Dharmakumar, Sotirios Tsaftaris -
Towards Hyper-Reduction of Cardiac Models using Poly-Affine Deformation
Gaetan Desrues, Hervé Delingette, Maxime Sermesant -
Conditional Generative Adversarial Networks for the prediction of cardiac contraction from individual frames
Julius Ossenberg-Engels, Vicente Grau -
Co-registered cardiac ex vivo DT images and histological images for fibrosis quantification
Peter Lin, Anne Martel, Susan Camilleri, Mihaela Pop -
Manufacturing of Ultrasound & MRI Compatible Aortic Valves Using 3D Printing for Analysis & Simulation
Shu Wang, Harminder Gill, Weifeng Wan, Joao Filipe Fernandes, Yohan Noah, Helen Tricker, Ronak Rajani, Sergio Uribe, Jesus Urbina, Julio Sotello, Pablo Lamata, Kawal Rhode -
End-to-end Cardiac Ultrasound Simulation for a Better Understanding of Image Quality
Alexandre Legay, Thomas Tiennot, Jean-Francois Gelly, Maxime Sermesant, Jean Bulté -
4D CNN for semantic segmentation of cardiac volumetric sequences
Andriy Myronenko, Dong Yang, Varun Buch, Daguang Xu, Alvin Ihsani, Sean Doyle, Mark Michalski, Neil Tenenholtz, Holger Roth -
Ultra-DenseNet for Low-dose X-ray Image Denoising in cardiac catheter-based procedures
Yimin Luo, Daniel Toth, Kui Jiang, Kuberan Pushparajah, Kawal Rhode -
Combined Intensity- and Point-Based Cardiac Registration in the Presence of Landmark Errors
Mia Mojica, Mehran Ebrahimi -
Modality Independent Left Ventricle Scar Classification
Hugh O’Brien, John Whitaker, Baldeep Sidhu, Justin Gould, Tanja Kurzendorfer, Mark O’Neill, Ronak Rajani, Christopher Rinaldi, Kawal Rhode, Peter Mountney, Steven Niederer
CRT-EPIGGY19 challenge
-
Electrophysiological Model Personalisation to Porcine in-vivo Data for Paced Activation Prediction
Nicolas Cedilnik, Maxime Sermesant -
Evaluation of meshless methods for cardiac electrophysiological simulations based on porcine experimental data
Konstantinos A. Mountris, Esther Pueyo -
Prediction of electrical activation patterns after cardiac resynchronization therapy in porcine hearts with meshless models
Carlos Albors, Eric Lluch, Jordi Mill, Rubén Doste, Oscar Camara, Mathieu De Craene, Hernán Morales -
Prediction of CRT activation sequence by personalization of biventricular model from electroanatomical maps
Juan Francisco Gomez, Rafa Sebastian -
Optimization of CRT therapy device based on personalized computer model
Svyatoslav Khamzin, Arsenii Dokuchaev, Olga Solovyova
Multi-sequence Cardiac MR Segmentation challenge
-
Unsupervised Multi-modal Style Transfer for Cardiac MR Segmentation
Chen Chen, Cheng Ouyang, Giacomo Tarroni, Jo Schlemper, Huaqi Qiu, Wenjia Bai, Daniel Rueckert -
Combining Multi-Sequence and Synthetic Images for Improved Segmentation of Late Gadolinium Enhanced Cardiac MRI
Victor Manuel Campello, Carlos Martin-Isla, Cristian Izquierdo Morcillo, Miguel Angel Gonzalez Ballester, Karim Lekadir -
Multi-sequence Cardiac MR Segmentation with Adversarial Domain Adaptation Network
Jiexiang Wang, Hongyu Huang, Chaoqi Chenm Wenao Ma, Yue Huang, Xinghao Ding -
SK-Unet: an Improved U-net Model with Selective Kernel for the Segmentation of Multi-sequence Cardiac MR
Xiyue Wang, Sen Yang, Mingxuan Tang, Yunpeng Wei, Xiao Han, Ling He, Jing Zhang -
Automated Multi-sequence Cardiac MRI Segmentation Using Supervised Domain Adaptation
Sulaiman Vesal, Nishant Ravikumar, Andreas Maier -
Cardiac Segmentation of LGE MRI with Noisy Labels
Holger Roth, Wentao Zhu, Dong Yang, Ziyue Xu, Daguang Xu -
An Automatic Cardiac Segmentation Framework based on Multi-sequence MR Image
Yashu Liu, Wei Wang, Kuanquan Wang, Gongning Luo, Chengqin Y -
Deep learning based multi-model cardiac MR image segmentation
Rencheng Zheng, Xingzhong Zhao -
Segmentation of Multimodal Myocardial Images Using Shape-Transfer GAN
Xumin Tao, Hongrong Wei, Wufeng Xue, Dong Ni -
Adversarial Convolutional Networks with Weak Domain-Transfer for Multi-Sequence Cardiac MR Images Segmentation
Jingkun Chen, Hongwei Li, Jianguo Zhang, Bjoern Menze -
Pseudo-3D Network for Multi-sequence Cardiac MR Segmentation
Tao Liu, Yun Tian, Shifeng Zhao, Xiaoying Huang, Yang Xu, Gaoyuan Jiang, Qingjun Wang -
A Two-Stage Fully Automatic Segmentation Scheme Using Both 2D and 3D U-Net for Multi-Sequence Cardiac MR
Haohao Xu, Zhuangwei Xu, Wenting Gu, Qi Zhang -
Knowledge-based multi-sequence MR segmentation via deep learning with a hybrid U-Net++ model
Jinchang Ren, He Sun, Yumin Huang, Hao Gao -
Style Data Augmentation for Robust Segmentation of Multi-Modality Cardiac MRI
Buntheng LY, Hubert Cochet, Maxime Sermesant