Program
8:00-8:35 | Welcome |
8:35-9:15 | Disentangled representation learning in medical imaging Keynote speaker: Professor Sotirios A. Tsaftaris (University of Edinburgh, UK) ![]() |
9:15-10:30 | Regular papers |
9:15-9:27 | Assessing the Impact of Blood Pressure on Cardiac Function Using Interpretable Biomarkers and Variational Autoencoders (EP Anton, B Ruijsink, J Clough, I Oksuz, D Rueckert, R Razavi, A King) |
9:27-9:40 | A Cascade Regression Model for Anatomical Landmark Detection (Z Tan, Y Duan, Z Wu, J Feng, J Zhou) |
9:40-9:52 | Comparison of 2D Echocardiography and Cardiac Cine MRI in the Assessment of Regional Left Ventricular Wall Thickness (V van Hal, D Zhao, K Gilbert, TPB Gamage, C Mauger, RN Doughty, ME Legget, J Zhao, A Nalar, O Camara, AA Young, VY Wang, M Nash) |
9:52-10:05 | Learning interactions between cardiac shape and deformation: application to pulmonary hypertension (M Di Folco, P Clarysse, P Moceri, N Duchateau) |
10:05-10:17 | Deep Learning Surrogate of Computational Fluid Dynamics for Thrombus Formation Risk in the Left Atrial Appendage (X Morales, J Mill, KA Juhl, A Olivares, G Jimenez-Perez, RR Paulsen, O Camara) |
10:17-10:30 | Probabilistic Motion Modeling from Medical Image Sequences: Application to Cardiac Cine-MRI (J Krebs, T Mansi, N Ayache, H Delingette) |
10:30-10:45 | Coffee break |
10:45-12:00 | CRT-EPIGGY19 Challenge |
10:45-11:00 | Best (and worst) practices for organizing a challenge on cardiac biophysical models during AI summer: the CRT-EPiggy19 challenge (O Camara) |
11:00-11:10 | Electrophysiological Model Personalisation to Porcine in-vivo Data for Paced Activation Prediction (Cedilnik, M Sermesant) |
11:10-11:20 | Evaluation of meshless methods for cardiac electrophysiological simulations based on porcine experimental data (KA Mountris, E Pueyo) |
11:20-11:30 | Prediction of electrical activation patterns after cardiac resynchronization therapy in porcine hearts with meshless models (C Albors, E Lluch, JM, R Doste, O Camara, M De Craene, H Morales) |
11:30-11:40 | Prediction of CRT activation sequence by personalization of biventricular model from electroanatomical maps (JF Gomez, B Trenor, R Sebastian) |
11:40-11:50 | Optimization of CRT therapy device based on personalized computer model (S Khamzin, A Dokuchaev, O Solovyova) |
11:50-12:00 | Challenge wrap-up |
12:00-12:36 | Regular poster teaser (2 min for each poster |
12:36-14:00 | Lunch, poster presentation, scoring |
14:00-15:15 | LV Full Quantification Challenge |
14:00-14:20 | Challenge data and description from the organizers |
14:20:14:30 | Left Ventricle Quantification Using Direct Regression with Segmentation Regularization and Ensembles of Pretrained 2D and 3D CNNs (N Gessert, A Schlaefer) |
14:30-14:40 | Left Ventricle Quantification with Cardiac MRI : Deep Learning Meets Statistical Models of Deformation (JC Acero, H Xu, E Zacur, J Schneider, P Lamata, A Bueno-Orovio, V Grau) |
14:40-14:50 | Left Ventricular Parameter Regression From Deep Feature Maps of a Jointly Trained Segmentation CNN (S Tilborghs, F Maes) |
14:50-15:00 | A Two-Stages Temporal-Like Fully Convolutional Network Framework for Left Ventricle Segmentation (Z Zhao, N Boutry, E Puybareau, T Géraud) |
15:00-15:15 | Challenge wrap-up |
15:15-15:30 | Coffee break |
15:30-17:00 | Multi-Sequence Cardiac MR Segmentation Challenge |
15:30-15:40 | Challenge introduction |
15:40-15:53 | Unsupervised Multi-modal Style Transfer for Cardiac MR Segmentation (C Chen, C Ouyang, G Tarroni, J Schlemper, H Qiu, W Bai, D Rueckert) |
15:53-16:06 | Combining Multi-Sequence and Synthetic Images for Improved Segmentation of Late Gadolinium Enhanced Cardiac MRI (VM Campello, C Martin-Isla, CI Morcillo, MAG Ballester, K Lekadir) |
16:06-16:19 | Multi-sequence Cardiac MR Segmentation with Adversarial Domain Adaptation Network (J Wang, H Huang, C Chen, W Ma, Y Huang, X Ding) |
16:19-16:32 | SK-Unet: an Improved U-net Model with Selective Kernel for the Segmentation of Multi-sequence Cardiac MR (X Wang, S Yang, M Tang, Y Wei, X Han, L He, J Zhang) |
16:32-16:45 | Automated Multi-sequence Cardiac MRI Segmentation Using Supervised Domain Adaptation (S Vesal, N Ravikumar, A Maier) |
16:45-16:58 | Cardiac Segmentation of LGE MRI with Noisy Labels (H Roth, W Zhu, D Yang, Z Xu, D Xu) |
17:00-17:15 | Closing and awards |